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Abstract:

Current cancer drug development processes that experimentally test all potential drugs on various
cell lines through in vitro assays are tedious and inefficient. This project developed a computational
method for predicting drug effectivity through IC50 values based on genomic and physicochemical
characteristics of the cell lines and drugs.

Three machine learning methods were used: standard and Elastic Net linear regression, Stochastic
Gradient Descent (SGD) linear regression, and deep neural networks with a mean squared error loss
function and the Adam optimizer algorithm. Data from the GDSC, COSMIC, and ChEMBL databases
were compiled and processed using Postgres, and genomic and drug features such as genetic mutation
types and mechanisms of drug action were chosen and filtered. Exploratory data analysis was then
conducted and demonstrated that the feature values cluster in patterns that differentiate the IC50 values,
thus proving to be influential in prediction.

R-squared accuracy scores were calculated over four datasets: urinary tract cancer, kidney cancer,
hematopoietic and lymphoid cancer, and a combined global set. The scores of the standard and Elastic Net
linear regression were negative and did not converge; this was most likely due to the high sparsity and
large size of the datasets. On the other hand, SGD regression and the neural network produced much more
accurate predictions. On average, the neural network scores were higher and were more stable with less
variation. Global models also displayed high accuracy, with scores of 0.80 and 0.95 for SGD regression
and neural networks, respectively. Finally, the most significant predictive features were discovered to be
the raw intensity scores of the drugs.

These computational models can be used to greatly speed up drug development processes by
quickly eliminating ineffective combinations, thus considerably reducing the number of drug candidates
to be physically tested in experimental assays. Finally, this method can be used to recognize overarching
characteristics common to successful compounds, allowing for the creation of more effective drugs, and
discover possible new targets for drugs outside the cancer types originally intended for them.
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Introduction

This project developed an accurate computational method for the prediction of cancer drug
effectivity based on the genomic characteristics of the cancer cell lines and the physicochemical
properties of potent compounds. Three machine learning techniques were used: standard and
regularized linear regression, Stochastic Gradient Descent (SGD) linear regression, and deep
neural networks. These methods learn by minimizing prediction error in order to increase
accuracy, and were chosen in order to recognize both linear and nonlinear possible relationships
in the data.

Drug effectivity was measured by IC50 values, or the half-maximal inhibitory concentrations
where drug response reaches an absolute cell viability inhibition of 50% (Aykul &
Martinez-Hackert, 2016). IC50 values were chosen to measure drug effectivity because they
provide a concise summary of drug suitability; the lower the IC50 value, the lower the
concentration needed and thus the more potent the drug is.

Cancer drug development is a long and costly process; the average cost for a single drug is $648
million over 7.3 years (Prasad & Mailankody, 2017). This is due to the extensive experimental
testing of potential drugs on various cell lines. Thus, the incorporation of alternative methods
utilizing machine learning and analytical screening would be extremely helpful in narrowing
fields of drug candidates before physical testing, therefore reducing both development cost and
time.

Current computational methods use a variety of machine learning techniques to predict efficacy;
however, there are few rigorous comparisons of the most promising methods, which was
conducted in this project. Furthermore, by utilizing both genomic and physicochemical data,
cancer patient heterogeneities can be better accounted for during the development of treatment.
The ability to input varied values for genomic and chemical features enable accurate predictions
of effectivity for different drug options, thus contributing to advancements in personalized
medicine.



Materials, Methods, and Procedures

Three machine learning methods were utilized: standard and regularized (Elastic Net) linear
regression, Stochastic Gradient Descent (SGD) linear regression, and deep neural networks. The
deep neural networks (Keras Sequential Model) were constructed using Tensorflow, with the
Adam optimizer and Mean Squared Error (MSE) loss function.

Data from three genomic and drug databases were aggregated and cleaned to form the datasets.
Cleaning consisted of filtering out unwanted NaN (not-a-number) or missing data. The first
database was GDSC (Genomics of Drug Sensitivity in Cancer), which provides IC50 and
intensity data for each drug tested on the cell lines, such as the raw intensity values for each drug
sample. Additionally, it contains cell line and drug information such as the cancer site/histology,
drug name and associated synonyms, and the drug target and target pathway (Yang et al., 2012).
The second database used was COSMIC (Catalogue of Somatic Mutations in Cancer), which
provides genomic features of the cancer cell lines such as the sequence mutation type (gain/loss),
genetic mutation description, and DNA strand mutated (Forbes et al., 2014). Finally, the third
database used was the ChEMBL Drug Database, which provides the physicochemical properties
of the drugs such as drug target, mechanisms of action, ingredients, and strengths (Gaulton et al.,
2016).

The programming language and libraries used to create the machine learning models were
Python 3.6.3 with Pandas, Numpy, Matplotlib, Seaborn, scikit-learn, Tensorflow, and Keras
libraries.

The scoring method used to evaluate the machine learning models was R-squared accuracy,
which indicates the proportion of the variance of the predicted values in relation to the actual
(expected) values. As the R? score grows closer to 1, this signifies that the model better fits the
data. If it decreases toward 0, this signifies that the model fails to explain the data well.
Equations 1, 2, and 3, shown below, shows the equations used to compute the score.

SStes = Z(yz - fz)z = Ze?

SS This is the sum of the squared differences between

residual expected and predicted values.
where

SStotal SSiot = Z(y" — g)z

This is the sum of the squared differences between
the expected values and the mean expected value.

R2

|
[

Equations 1, 2, and 3.



The cancer types used to create datasets were urinary tract, kidney, and haematopoietic and
lymphoid cancer. Below, Table 1 shows the number of samples and features in each dataset.

Cancer Type Datasets Total Number of Samples | Total Number of Features
Urinary Tract 165,231 106
Kidney 447913 110
Haematopoietic and Lymphoid 29,851 104
Global (above datasets combined) 670,171 110

Table 1.

Table 2, below, shows the total number of drugs and cell lines in the global dataset.

Total Number of Drugs 22
Total Number of Cell Lines 21
Table 2.

Main Procedural Steps
1) Data Cleaning, Compiling, and Preparation

a) Assemble tables using the PostgreSQL 10 database & the SQLPro tool: inner join
methods used.
1) GDSC and ChEMBL databases matched by standard drug name.
11) GDSC and COSMIC databases matched by cosmic id and sample _id.
b) Read CSV files using SQL: import all data using read csv()
c) One Hot Encoding (OHE) - convert all values to continuous types using get dummies()
d) Standardize numerical values through scale()
€) Create cross-validation training and testing datasets with cross_val score()
2) Construct, Fit, and Run Linear Models
a) Generate learning curves with 10-fold cross-validation: increments of data samples
b) Repeat trials over cancer types
3) Construct, Fit, and Run SGD Model
a) Generate learning curves with 10-fold cross-validation: increments of data samples
b) Repeat trials over cancer types
4) Construct, Train, and Run Neural Network



a) Construction parameters, optimizer, loss functions: configure using compile()
b) Set Keras training parameters and number of epochs: train using fit()
c) Generate learning curves with 10-fold cross-validation: increments of data samples

Figure 1, shown below, provides a visual overview of the steps.

Databases:

- OHE
converts all
data types to
continuous

- data is
numerically
standardized

Procedure

COSMIC

ChEMBL

Compiled and
Filtered Tables

(670,171 samples)

Features chosen from

the 3 tables:

- each cancer cell line
tested with a drug has a
specific IC50 value:
genomic & drug features
describe each sample

Machine Learning Models:

Linear
Regressions

SGD
Regression

mechanism)

Neural
Network

Trials Run:

- Accuracy
values/error for
10-fold CV over
3 types of cancer
& 1 generalized
dataset

Outputs:

- Learning curves
generated for
each model
shows increments
from the minimal
to maximal
amounts of
samples available
in each dataset

R-squared error analysis and feature influence
graphs constructed using trained models

Figure 1.

In-Depth Procedure

1. Download raw data files from cancer cell line and cancer drug databases.

1.

2. COSM

Genomics of Drug Sensitivity in Cancer (GDSC) files:

1. Cell Lines Details.xlsx (Annotated List of Cell Lines)

nhwbd

Screened Compounds.xlsx (Screened Compounds)

(Recently Altered Chromosomal Segments (RACS) in Cell Lines)
GSE68379 series_matrix.txt (DNA Methylation Data for Cell Lines)
V17a public_raw data.xIsx (Compound Sensitivity Data for Cell Lines)

6. Vl17a fitted dose response.xlsx (Log (IC50) and AUC Values)

IC Database files:

1. CosmicMutantExport.tsv.gz (COSMIC Mutation Data)




3.

4.

5.

CosmicNCV.tsv.gz (Non-Coding Variants)
CosmicCompleteGeneExpression.tsv.gz (Gene Expression)
CosmicCompleteDifferentialMethylation.tsv.gz (Methylation Data)

5. CosmicStructExport.tsv.gz (Structural Genomic Rearrangements)
ChEMBL files:

1. chembl 23.fa.gz (Fasta protein files)

2. chembl 23 chemreps.txt.gz (Chemical representations)

3. chembl 23 mysql.tar.gz (MySQL file loading)
STITCH files:

1. General identification flatfiles

2. 9606.protein_chemical.links.v5.0.tsv.gz (chemical-protein links)

3. 9606.actions.v5.0.tsv.gz (interaction types of links)
Convert each file type to a .csv (comma-separated values)-type file in order to
prepare the data to be uploaded to and read in the Python environment.

b

2. Read and upload data into Jupyter Notebook Python environment using the Anaconda
Navigator program.

1.

2.
3.

Import necessary data processing and machine learning modules: pandas, numpy,
matplotlib and tensorflow, keras.

Save each read data file as an individual dataset using MySQL.

Find overlapping samples / note and fill in missing data for each type of cancer
(Breast Cancer, Large Intestine Cancer, Lung Small Cell Carcinoma)

1. Use the COSMIC cell line names/IDs and drug names to compare samples
in the datasets. Using the MySQL database, determine the overlapping
samples and create a total dataset of all the features for the common
samples of each cancer type.

2. Divide the total datasets for each cancer type into training and testing
datasets using an appropriate k-fold cross-validation outline.

3. Normalize data types

1.

2.

Run One Hot Encoding in order to standardize the different types of data:
continuous, binary, and categorical on a consistent numerical scale.

1. Using Keras, define one hot labels = keras.utils.to_categorical(labels,
num_classes=10). This will be used later on when plotting and learning
from the data.

Run a Min-Max data normalization method in order to fit the data on a level scale
of O to 1.

4. Run linear regression models using numpy and matplotlib.

1.

2.
3.

Define x and y-axis arrays and append each line from the data file into the
corresponding array.

Use numpy to plot the arrays on a 2D graph.

Predictions can be calculated using the line of best fit equation

N

T o
y=wx twx + - + wx =wex =w x.Use the derivative of

N N
e . ~ 2 T | 2.
the error minimizing equation £ = ), (yl, — yi) = ) (yl, — w x) in



7.

order to calculate the line of best fit for the dataset. After calculating % Eand
isolating w, individual weights for each feature can thus be determined by the

equationW = (x Tx) Iy Ty. (Use sklearn.linear model.LinearRegression to
implement this.)

Use the training data to fit the model, using model.fit(), and create learning
curves. Repeat for each training dataset for each cancer type; add each additional
type to the model and re-evaluate.

Use the testing data to evaluate the accuracy of the model (R-squared accuracy)
using 10-fold cross-validation. Repeat for each testing dataset for each cancer
type; add each additional type to the model and re-evaluate.

Repeat with the addition of a standardizing parameter using SGD linear
regression. (Use sklearn.linear model.SGDRegressor to implement this.)

Error and accuracy statistics for the testing datasets generated by cross-validation
will be evaluated in data analysis.

5. Construct Neural Network (NN) model using Keras and Tensorflow.

1.
2.

Create a sequential model and define the input shape for the first layer.
Configure the learning process using a compile function. Set optimizer =
“rmsprop” and loss = “mse.” This sets up a mean squared error regression
prediction process.

Use the following hyperparameters: 3 hidden layers, 110 nodes per layer, 5
epochs per CV, and 10-fold cross-validation of each dataset.

6. Run the training dataset compiled by the cross-validation methods used above.

1.

Use Keras in the Jupyter environment to process the training datasets using the
NN model, as described as follows:
1. Make sure to take accuracy measurements (R-squared accuracy) at each
interval in order to configure learning curves during data analysis.
2. As the model learns, configure/adjust the weights by using the function
model.fit(). Use labels = one_hot labels.
3. Repeat for each training dataset for each cancer type; add each additional
type to the model and re-evaluate.

7. Run the testing dataset compiled by the cross-validation methods used above.

1.

Use Keras in the Jupyter environment to process the testing datasets using the NN
model, as described as follows:
1. Make sure to take accuracy measurements (R-squared accuracy) at each
interval in order to configure learning curves during data analysis.
2. Repeat for each testing dataset for each cancer type; add each additional
type to the model and re-evaluate.
3. Error and accuracy statistics for the testing datasets generated by
cross-validation will be evaluated in data analysis.



Results (Data and Findings)

Results from exploratory dataset analysis showed that the features were distributed in ways that
suggested promising predictive power. For instance, in the kidney dataset, drug maximal
intensity values display a positive correlation with IC50 values. In the hematopoietic and
lymphoid (H&L) dataset, drug mechanisms of action cluster in patterns that differentiate IC50
values. The features that cluster are thus more influential in prediction. The graphs are shown
below in Figures 2 and 3.

Kidney Raw_Max vs IC50 Haematopoietic and Lymphoid Mechanism_of_Action vs IC50

In_ic50

mechanism_of_action

raw_max

Figure 2. Figure 3.

Standard and Elastic Net linear regression models produced poor accuracy scores and failed to
converge properly. Negative accuracy scores were produced, which signifies that the model is a
worse predictor than a horizontal line. This is shown below in Figures 4 and 5.
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Figure 4. Figure 5.



The SGD Linear Regression model produced final rounded accuracy scores ranging from 0.62 to
0.95; however, there was consistently a large variance in CV scores. The urinary tract dataset
produced the most accurate model. This is shown below in Figures 6, 7, and 8.
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SGD Urinary Tract Learning Curve
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The Neural Network model produced final rounded accuracy scores ranging from 0.80 to 0.99;
variance in CV scores was consistent throughout the different datasets. The urinary tract dataset
produced the most accurate model. This is shown below in Figures 9, 10, and 11.
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Neural Network Haematopoietic and Lymphoid Learning Curve
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For the global models (all cancer type datasets combined), convergence is achieved between the
training and CV scores, which demonstrates accurate prediction ability. The final rounded 0.80
and 0.95 accuracy scores show that a global, multi-cancer model is functional and generalization
can be achieved without sacrificing prediction accuracy. This is shown below in Figures 12, 13.
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Figure 12. Figure 13.

On average, the neural network accuracy scores across the cancer types are higher than SGD
scores (0.93 > 0.85). Neural networks produced a more stable set of accuracy scores; the average
range is lower than the average range of SGD (0.23 < 0.32). Furthermore, the standard deviation
in neural network scores across 10 trials is significantly lower than the variation of SGD scores
(0.07 <0.10). Below, Figures 14 and 15 show these comparisons between SGD regression and
neural networks.

Accuracy: SGD Regression vs Neural Network Standard Deviation: SGD Regression vs Neural Network
@ SGD Regression I SGD Regression
1 @ Neural Network 02 B Neural Network
0.9 0.15
0.1
0.8
0.05
0.7
Urinary Tract Kidney Hematopoietic ~ General Model Urinary Tract Kidney Hematopoietic General Model
and Lymphoid and Lymphoid

Figure 14. Figure 15.
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The P-values obtained from statistical hypothesis testing are shown below in Table 3. The
P-values from the T-tests conducted show that the accuracy differences between SGD and Neural
Networks are more significant when larger datasets (Kidney and Global) are utilized in training.

Urinary Tract

Kidney

Haematopoietic & Lymphoid Global

P-Value

(Neural networks vs. SGD)

01042752285

1.608x10"-4

0.348190281 1.80x10"-3

Table 3.

Feature coefficient value graphs display the most significant features, as shown below in Figure
16. The features most influential for prediction are indicated by their y-values (coefficient
values), shown by the high spikes in the graphs.
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Discussion and Conclusions

Several key conclusions can be drawn from the data. On average, the neural network accuracy
scores across the cancer types are higher than SGD scores (0.93 > 0.85). Neural networks
produced a more stable set of accuracy scores; the average range is lower than the average range
of SGD (0.23 < 0.32). Furthermore, the standard deviation in neural network scores across 10
trials is significantly lower than the variation of SGD scores (0.07 < 0.10). The most accurate
scores in both of the models (0.954 and 0.997) were produced by the urinary tract dataset.
However, the H&L dataset produced significantly lower scores (0.701 and 0.785). This could be
due to the smaller dataset size and thus the use of fewer samples for training.

Standard and Elastic Net linear models failed to converge and instead produced negative
accuracy scores, which shows that they could not learn from the datasets and make accurate
predictions due to the size (over 100,000 samples) and sparsity (values of zero were common due
to One Hot Encoding) of the data matrices. SGD regression was a better fit than linear or Elastic
Net models for the data because it is able to handle more samples (over 100,000) and works well
with sparse matrices (relatively few nonzero values in each feature column).

A neural network model with 3 hidden layers, 110 nodes per layer, and 5 epochs per CV was
found to produce the highest accuracy scores out of the models tested. Cross-validation was a
useful technique in reducing overfitting potential; it provided even testing across the dataset.
Furthermore, increasing the number of hidden layers or epochs did not significantly alter the
accuracy scores produced for the neural network models; this could be because prediction
accuracy levels off at 3 layers and 5 epochs.

Feature coefficient value graphs display the most significant features, as shown above in Figure
15. The features that correspond to the most prominent spikes in the graphs are the raw intensity
values of the drugs and, in the haematopoietic and lymphoid graph, genetic mutation description
(specifically, silent mutations).

Finally, the results show that a global, multi-cancer model is functional in prediction and
generalization can be achieved without sacrificing accuracy. For SGD linear regression, the
average score collected for the global dataset over 10-fold cross-validation is 0.817. For the deep
neural network, the average score collected for the global dataset over 10-fold cross-validation is
0.938. For both models, the final cross-validation scores at the end of learning curve generation
(progressing with incrementing amounts of samples) are close to the training scores at the same
point, displaying convergence of the two curves. This would mean that a global model trained on
multiple cancer type datasets, which would significantly increase the efficiency of model training
and ease of overall use, can be utilized as it is still comparable in accuracy to the cancer-specific
models.
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Several factors may have contributed to experimental error. For instance, the datasets originally
contained not a number (NaN) values, so the the dropna() function was used to filter out samples
that contained any missing data. This may have led to decreased model accuracy as the removed
samples may have skewed the dataset. Additionally, optimal parameters were not able to be
achieved in the neural network due to time and computational constraints. This may have
prevented the development of a model with optimal fit during training, thus decreasing accuracy
scores during cross-validation tests.

Future improvements can also be made in order to improve prediction accuracy and efficiency. In
addition to gene mutations, it is important to utilize a variety of types of genomic characteristics
of cell lines, such as whole-protein and intra-protein changes, abnormal gene expression, and
alternative transcription processes that lead to atypical gene splicing and protein isoforms.
Additionally, incorporating certain known normal gene-drug interactions and specific
pharmacogenomic characteristics would be helpful in predicting the effectivity of drugs in
treating different variations of cancers and improving precision medicine efforts for patients.
Finally, the use of feature selection methods in building and training the models can help
increase their predictive power and accuracy by decreasing the amount of features needed and
eliminating noise from unhelpful features.

A novel computational method for predicting cancer drug effectivity is a valuable alternative to
physically testing many drug candidates through in vitro assays early in the development
process, which is very tedious and inefficient. This multi-cancer prediction model can be used to
identify drugs that can be effectively used for more purposes (such as new treatment for
originally non-targeted cancers) based on the characteristics of the drugs. Furthermore, drug
development procedures can be sped up greatly by utilizing data collected through machine
learning to recognize characteristics common to compounds that are currently known to be
effective for specific cancer types and formulate even more effective drugs that combine these
properties. Finally, the ability to input different drug and genomic features and generate an
accurate prediction of effectivity can be used in precision medicine, where personalized
treatments are developed for each individual patient.

Overall, the use of these machine learning methods can greatly speed up drug development
processes. They provide an initial stage that filters a large number of possibly potent drugs in
order to eliminate ineffective combinations before starting the tedious process of conducting
actual physical trials with cancer cell lines.
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